Genomics of high risk AML

B. Falini, Institute of Hematology, University of Perugia,

Adverse-risk AML

	Alkylating agent class	Topoisomerase II inhibitor class
Cytogenetics	del(5q),-7/del(7q)*	t(11q23.3), t(21q22.1)
Frequency	~70% of t-MN patients	~30% of t-MN patients
Latency	5–7 years	2–3 years
Presentation	MDS	AML
Implicated drugs	 Alkylating agents: bendamustine, busulfan, carmustine, chlorambucil, cyclophosphamide, dacarbazine, lomustine, melphalan, mitomycin C, nitrogen mustard, procarbazine, thiotepa Platinum-based agents: cisplatin, carboplatin Antimetabolite agents: azathioprine, fludarabine 	 Anthracyclines: daunorubicin, epirubicin, doxorubicin Other topoisomerase II inhibitors: etoposide, teniposide, amsacrine, mitoxantrone

Two major classes of therapy-related myeloid neoplasms

*Loss of the short arm of chromosome 17 containing the *TP53* gene due to del(17p), unbalanced rearrangement or –17 is observed in association with del(5q) in 40% of cases. AML, acute myeloid leukaemia; MDS, myelodysplastic syndrome; t-MN, therapy-related myeloid neoplasm.

AML with monosomy 7 (-7)

- Monosomy 7 (-7) is the most frequent autosomal monosomy in AML. -7/del(7q) abnl is frequent in therapy-related/ AML*.
- -7 found in congenital evolving into myeloid neoplasms, e.g. germ-line *GATA2* mutations, neurofibromatosis, severe congenital neutropenia°.
- Tumor-suppressor genes located in chr. 7 are believed to act
- in a *haploinsufficient* manner:
 - SAMD9/SAMD9L \rightarrow endosomal proteins
 - \circ *EZH2* Histone modifying enzymes \rightarrow frequently
 - *MLL3* associated with *Ras*-pathway mutations and *TP53* inactivation[°].
- Prognosis of AML/MDS with -7 is worse than del(7q). Possibly for the more frequent association with unfavorable abnl (i.e. *EVI1*-r), del(7q)q) more commonly associated with AML with favorable karyotypes (i.e. inv(16), t(8;21))°.§.

Survival of AML patients with -7/del(7q) abnl \S

^Grimwade D, Blood. 2010; *McNerney ME, Nat Rev Cancer.2017; °Inaba T, Blood. 2017; §Schanz J, J Clin Onc. 2010.

The enigma of monosomy 7

Inaba T et al. The enigma of monosomy 7, Blood, 2018.

EVI1-rearranged AML

- *EVI1* (ecotropic viral integration site 1) gene, also termed *MECOM* is located on chromosomal band 3q26.2.
- The inv(3)q21q26.2)/t(3;3)q21;q26.2)^ repositions a distal GATA2 enhancer to activate MECOM. Deregulated MECOM and GATA2 expression.
- High levels of *EVI1* in normal CD34+ cells* and 5-10% of human AML°.
- AML requires > 20% blasts. Usually CD34+. CD7+.
- *EVI1*-rearranged (*EVI1*-r) AML is frequently associated with monolobated megakaryocytes, multilineage dysplasia and normal/elevated blood platelet counts[^]. Poor prognosis.
- Monosomy 7 (-7) is the most frequent associated cytogenetic anomaly in *EVI1*-r AML (33-66% of cases of inv(3)/t(3;3)^.
- Mutational oncoprint featuring *EVI1-r* AML category[§]:
 - *RAS*-pathway (*NRAS*, *KRAS*, *PTPTN11*, *NF1*) (~60-70%)
 - Splicing factors (*SF*£*B1*, *U*2*AF1*) (~60%)
 - o *IKZF1* (∽25%)
 - *TP53* (~25%), *ASXL1* (~15%)

Survival of AML patients with 3q abnl[^]

- <u>Definition</u>: ≥3 chromosomal abn. in the absence of 1 of the WHO-designated recurring translocations or inversions, including t(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23.3), t(6;9), inv(3) or t(3;3)[^].
- ~10-12% of adult AML cases, most frequent losses involve 5q (80% of cases), 7q and 17p chromosomes*.
- CK-AML was recently proposed to be further subclustered* into:
 - <u>Typical CK</u>: presence of 5q, 7q abn. and/or 17p loss → association with *TP53* mutations (~80% of cases).
 Very poor prognosis.
 - <u>Atypical CK</u>: absence of above chromosomal abnl → less often *TP53* mutations . Better Outcome.

Deregulated pathways in CK AML°

^Dohner H, Blood. 2017; *Mrozek K, Leukemia. 2019; °Eisfeld AK, Leukemia. 2017.

AML with monosomal karyotype

- <u>Definition</u>: ≥2 distinct autosomal monosomies or one single autosomal monosomy in the presence of structural abnormalities^. Deletions of X and -Y are non considered monosomies.
- More frequent in therapy-related than *de novo* AML
- *TP53* gene alterations occur in ~70% of MK AML patients, leading to a markedly increased chromosomal instability^{*} and poor response to conventional chemotherapy^{^,*}.

^Breems DA, J Clin Onc. 2008; *Leung GM, Am J Hematol. 2019; °Anelli L, Oncotargets & Therapy, 2015.

AML with *BCR-ABL1* (Provisional WHO entity)

- Difficult to distinguish from myeloid blast crisis of CML. No previous CML history, < 2% basophils, rarely splenomegaly
- Deletion of antigen receptors genes (IGH, TCR), IKZF1 and/or CDKN2A supports a diagnosis of de novo disease
- Aberrant expression of CD19, CD7 and TdT is common
- Presence of t(9;22) or BCR/ABL fusion (p210). A subset of cases carry NPM1 mutations
- Important to recognize due to availability of targeted (TKI) therapy

Soupir CP, et al. Am J Clin Pathol 127:642, 2007;Konoplev S, et al. Leuk Lymphoma 54:138, 2013; Nacheva EP, et al. Br J Haematol 161:541, 2013

Falini B et al., Blood 2021

2017 ELN risk stratification by genetics

Risk category	Genetic abnormality		
Favorable	t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i>		
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11		
	Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} †		
	Biallelic mutated CEBPA		
Intermediate	→ Mutated NPM1 and FLT3-ITD ^{high} †		
	Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} [†] (without		
	adverse-risk genetic lesions)		
	t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i> ‡		
	Cytogenetic abnormalities not classified as favorable or adverse		
Adverse	t(6;9)(p23;q34.1); DEK-NUP214		
	t(v;11q23.3); KMT2A rearranged		
	t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i>		
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)		
	-5 or del(5q); -7; -17/abn(17p)		
	Complex karyotype,§ monosomal karyotypell		
	Wild-type NPM1 and FLT3-ITD ^{high} †		
	 Mutated RUNX1¶ Mutated ASXL1¶ Chromatin-spliceosome modifiers 		
	Mutated TP53#		

Papaemmanuil E, et al. NEJM 374:2209-2221, 2016

Papaemmanuil E, et al. NEJM 374:2209-2221, 2016

AML with mutated *RUNX1* (Provisional WHO entity)

- Mutations usually involve the RHD or TAD domains of RUNX1 (located at 21q22) and encoding the alpha subunit of CBF
- Search for germline mutations in the family (exclude autosomal dominant thrombocytopenia). Predisposes to AML
- Mutations in 4-16.0% of AML
- More frequent in older male patients
- Frequent prior history of MDS, or prior exposure to radiation
- May be preceded by Fanconi anemia or
- Congenital neutropenia
- Immature morphology (60% M0) and phenotype. Usually CD34+
- Frequent associated *MLL*-PTD or *ASXL1* mutations
- Poor response to therapy and short survival

Tang et al. Blood 114:5352, 2009 Mendler et al. JCO 30:3109, 2012

Table 1. Proposed Genomic Classification of Acute Myeloid Leukemia (AML).				
Genomic Subgroup	Frequency in the Study Cohort (N=1540)	Most Frequently Mutated Genes*		
	no. of patients (%)	gene (%)		
AML with NPMI mutation	418 (27)	NPM1 (100), DNMT3A (54), FLT3 ^{ITD} (39), NRAS (19), TET2 (16), PTPN11 (15)		
AML with mutated chromatin, RNA-splicing genes, or both†	275 (18)	RUNX1 (39), MLL ^{PTD} (25), SRSF2 (22), DNMT3A (20), ASXL1 (17), STAG2 (16), NRAS (16), TET2 (15), FLT3 ^{ITD} (15)		
AML with TP53 mutations, chromosomal aneuploidy, or both:	199 (13)	Complex karyotype (68), -5/5q (47), -7/7q (44), TP53 (44), -17/17p (31), -12/12p (17), +8/8q (16)		
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11	81 (5)	inv(16) (100), NRAS (53), +8/8q (16), +22 (16), KIT (15), FLT3 ^{TKD} (15)		
AML with biallelic CEBPA mutations	66 (4)	CEBPAbiallelic (100), NRAS (30), WT1 (21), GATA2 (20)		
AML with t(15;17) (q22;q12); PML-RARA	60 (4)	t(15;17) (100), FLT3 ^{ITD} (35), WT1 (17)		
AML with t(8;21)(q22;q22); RUNX1-RUNX1T1	60 (4)	t(8;21) (100), KIT (38), -Y (33), -9q (18)		
AML with MLL fusion genes; t(x;11)(x;q23)§	44 (3)	t(x;11q23) (100), NRAS (23)		
AML with inv(3) (q21q26.2) or t(3;3) (q21;q26.2); GATA2, MECOM(EVI1)	20 (1)	inv(3) (100), -7 (85), KRAS (30), NRAS (30), PTPN11 (30), ETV6 (15), PHF6 (15), SF3B1 (15)		
AML with IDH2R172 mutations and no other class-defining lesions	18 (1)	IDH2R172 (100), DNMT3A (67), +8/8q (17)		
AML with t(6;9) (p23;q34); DEK-NUP214	15 (1)	t(6;9) (100), FLT3 ^{ITD} (80), KRAS (20)		
AML with driver mutations but no detected class-defining lesions	166 (11)	FLT3 ^{ITD} (39), DNMT3A (16)		
AML with no detected driver mutations	62 (4)			
AML meeting criteria for ≥2 genomic subgroups	56 (4)			

* Genes with a frequency of 15% or higher are shown in descending order of frequency. Key contributing genes in each class are shown in boldface type.

† Classification in this subgroup requires one or more driver mutations in RUNX1, ASXL1, BCOR, STAG2, EZH2, SRSF2, SF3B1, U2AF1, ZRSR2, or MLL^{PTD}. In the presence of other class-defining lesions — namely, inv(16), t(15;17), t(8;21), t(6;9), MLL fusion genes, or complex karyo-type or driver mutations in TP53, NPM1, or CEBPA^{biallelic} — two or more chromatin-spliceosome mutations are required.

Classification in this subgroup requires TP53 mutation, complex karyotype, or in the absence of other class-defining lesions, one or more of the following: -7/7q, -5/5q, -4/4q, -9q, -12/12p, -17/-17p, -18/18q, -20/20q, +11/11q, +13, +21, or +22.

§ Multiple fusion partners for MLL were found, with the clinical implications depending on the specific fusion partner.

Papaemmanuil E, et al. NEJM 374:2209-2221, 2016

NPM1-mutated AML (NPMc+AML)

Falini B et al., NEJM 352:254-266, 2005

Sportoletti P et al. Leukemia 2015

AML triple mutated NPM1/FLT3-ITD/DNMT3A

- Median age 56 years; mostly women
- High blood cell count and percentage of BM blasts
- Normal cytogenetics
- Short event-free survival (EFS)

Post-remission therapy in high-risk AML

- Eligible patients with high risk AML should receive allo-HSCT
- Allo-HSCT should point to reduce at maximum post-transplant relapse

Clinical Trial: Age-adapted myeloablative T cell depleted haploidentical transplantation with Treg/Tcon immunotherapy in AML

Cyclophosphamide (15 mg/kg/day for 2 days)

Pierini A et al. Blood Adv, 2021

Total Marrow/Lymphoid Irradiation (TMLI) technology -Boosting irradiation in marrow and lymph nodes while sparing vital organs

Courtesy of Prof. C. Aristei

Haploidentical age-adapted myeloablative transplant and regulatory and effector T cells for AML

Pierini A. et al Blood Adv, 2021

Conclusions

- Both cytogenetic/FISH and mutation analysis are critical for identifying high-risk AML
- Some on the mutations with prognostic value (e.g. NPM1, RUNX1) define also new entities in the WHO-2016 classification of AML
- Post-remission allo-HSCT is fundamental to achieve cure in eligible high risk AML

Easy clinical scale selection of CD4+/CD25+ regulatory T Cells

Fully automated immunomagnetic selection by commercially available kits and device

1st step: Depletion of CD8+/CD19+cells

2nd step: Selection of CD25+ cells

«Treg» Final product Cells (x10⁹) = 280 (202-390) CD4/CD25+ = 92% (90-97%) FOXP3+ ce#sup to 90%

Table 1. Proposed Genomic Classification of Acute Myeloid Leukemia (AML).				
Genomic Subgroup	Frequency in the Study Cohort (N=1540)	Most Frequently Mutated Genes*		
	no. of patients (%)	gene (%)		
AML with NPM1 mutation	418 (27)	NPM1 (100), DNMT3A (54), FLT3 ^{ITD} (39), NRAS (19), TET2 (16), PTPN11 (15)		
AML with mutated chromatin, RNA-splicing genes, or both†	275 (18)	RUNX1 (39), MLL ^{PTD} (25), SRSF2 (22), DNMT3A (20), ASXL1 (17), STAG2 (16), NRAS (16), TET2 (15), FLT3 ^{ITD} (15)		
AML with TP53 mutations, chromosomal aneuploidy, or both‡	199 (13)	Complex karyotype (68), -5/5q (47), -7/7q (44), TP53 (44), -17/17p (31), -12/12p (17), +8/8q (16)		
AML with inv(16) (p13.1q22) or t(16;16) (p13.1;q22); CBFB-MYH11	81 (5)	inv(16) (100), NRAS (53), +8/8q (16), +22 (16), KIT (15), FLT3 ^{TKD} (15)		
AML with biallelic CEBPA mutations	66 (4)	CEBPAbiallelic (100), NRAS (30), WT1 (21), GATA2 (20)		
AML with t(15;17) (q22;q12); PML-RARA	60 (4)	t(15;17) (100), FLT3ITD (35), WT1 (17)		
AML with t(8;21) (q22;q22); RUNX1-RUNX1T1	60 (4)	t(8;21) (100), KIT (38), -Y (33), -9q (18)		
AML with MLL fusion genes; t(x;11)(x;q23)§	44 (3)	t(x;11q23) (100), NRAS (23)		
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2, MECOM(EVI1)	20 (1)	inv(3) (100), -7 (85), KRAS (30), NRAS (30), PTPN11 (30), ETV6 (15), PHF6 (15), SF3B1 (15)		
AML with IDH2 ^{R172} mutations and no other class-defining lesions	18 (1)	IDH2R172 (100), DNMT3A (67), +8/8q (17)		
AML with t(6;9) (p23;q34); DEK-NUP214	15 (1)	t(6;9) (100), FLT3 ^{ITD} (80), KRAS (20)		
AML with driver mutations but no detected class-defining lesions	166 (11)	FLT3 ^{ITD} (39), DNMT3A (16)		
AML with no detected driver mutations	62 (4)			
AML meeting criteria for ≥2 genomic subgroups	56 (4)			

* Genes with a frequency of 15% or higher are shown in descending order of frequency. Key contributing genes in each class are shown in boldface type.

† Classification in this subgroup requires one or more driver mutations in RUNX1, ASXL1, BCOR, STAG2, EZH2, SRSF2, SF3B1, U2AF1, ZRSR2, or MLL^{PTD}. In the presence of other class-defining lesions — namely, inv(16), t(15;17), t(8;21), t(6;9), MLL fusion genes, or complex karyo-type or driver mutations in TP53, NPM1, or CEBPA^{biallelic} — two or more chromatin-spliceosome mutations are required.

Classification in this subgroup requires TP53 mutation, complex karyotype, or in the absence of other class-defining lesions, one or more of the following: -7/7q, -5/5q, -4/4q, -9q, -12/12p, -17/-17p, -18/18q, -20/20q, +11/11q, +13, +21, or +22.

§ Multiple fusion partners for MLL were found, with the clinical implications depending on the specific fusion partner.

NPM1 mutations in the risk stratification of AML

Papaemmanuil E. et al., NEJM 374:2209-2221, 2016.